
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #9

Interfacing

• Abstract interface

• Interfacing with

– Library architecture

– Plugin

– Patch

3

Interfacing

• Primary objective of designing classes

– represent some concept, e.g. a player

– while hiding irrelevant implementations from the

users

• Ideally, only the interface describing public

members for a class should be exposed

– and more ideally only function members (get/set

methods to access data members)

4

Abstract interface

• Unfortunately, C++ exposes a lot more than that in

the header file

– Pre-processor directives

– Includes necessary for the file to compile correctly

– Declarations of all private and protected members

– Inline functions and template implementations

• Extra information are not necessarily problematic

as the use of non public members is shielded by

the compiler

5

Abstract interface

• But sometimes we need a better decoupling

between a class implementation and the

program

– to change class implementations without modifying

other code parts, only re-compile/re-link necessary

• e.g. re-implement AI strategy using different algorithms

– to change class implementation at run-time

• e.g. select a different rendering system at run-time

– to add new implementations after the program has

been released

• e.g. add new levels or game entities

6

Abstract interface

• Decoupling in general is a good idea

– Cleaner, easier-to-maintain code

– Better structural overview of the different parts

of the code

– Several programmers can work separately on

related pieces of code

• A very important tool for decoupling is the

use of abstract interfaces

– to separate the declaration and the

implementation of a C++ class

7

Abstract interface

• An abstract interface is a class that only has

pure virtual function members

– no implementation (except empty destructor)

– no data members

8

Abstract interface

class IAbstractInterfacePlayer {

 public:

 virtual ~IAbstractInterfacePlayer() {};

 virtual void moveTo(const float, const float) = 0;

 virtual int shootAt(Player) = 0;

 virtual bool isAlive() const = 0;

};

• There is no need for a body file (.cpp) as

there is no implementation, only a header

(.h) file exists

• By convention the class name is prefixed

with the letter I to indicate that it is an

abstract interface

• An implementation based on this interface

inherits from it and provides the

implementations for all the virtual functions

9

Abstract interface

• Example: implementation of the abstract

interface IAbstractInterfacePlayer

– function members are not pure virtual anymore

10

Abstract interface

#include “IAbstractInterfacePlayer.h” Player.h

class Player : public IAbstractInterfacePlayer {

 public:

 virtual void moveTo(const float, const float);

 virtual int shootAt(Player);

 virtual bool isAlive() const;

};

• Example: implementation of the abstract

interface IAbstractInterfacePlayer

11

Abstract interface

#include “Player.h” Player.cpp

void Player::moveTo(const float x, const float y) {

 // ...

}

int Player::shootAt(Player p) {

 // ...

}

bool Player::isAlive() const {

 // ...

}

• Example: implementation of the abstract

interface IAbstractInterfacePlayer

– we can now create an IAbstractInterfacePlayer

pointer instantiated with a derived Player object

12

Abstract interface

// ... main.cpp

IAbstractInterfacePlayer * player = new Player();

// ...

player->moveTo(2.0,4.6);

int amnoleft = player->shootAt(player2);

if (player->isAlive()) {

 // ...

}

// ...

• We can use the abstract interface as a

barrier

– Example with graphics renderer classes

13

Abstract interface

class IGraphicsRenderer { IGraphicsRenderer.h

 public:

 virtual ~IGraphicsRenderer() {};

 virtual void initialize() = 0;

 virtual void setWorld(const Matrix& m) = 0;

 virtual void renderMesh(const Mesh& m) = 0;

 // ...

};

• Different implementations can be provided

– e.g. Direct3D and OpenGL

14

Abstract interface

#include "IGraphicsRenderer.h" GraphicsRendererOGL.h

#include <gl.h>

class GraphicsRendererOGL: public IGraphicsRenderer {

 public:

 virtual void initialize();

 virtual void setWorld(const Matrix& m);

 virtual void renderMesh(const Mesh& m);

 // ...

};

• Different implementations can be provided

– e.g. Direct3D and OpenGL

15

Abstract interface

#include "IGraphicsRenderer.h" GraphicsRendererD3D.h

#include <d3d.h>

class GraphicsRendererD3D: public IGraphicsRenderer {

 public:

 virtual void initialize();

 virtual void setWorld(const Matrix& m);

 virtual void renderMesh(const Mesh& m);

 // ...

};

• The abstract renderer interface

– allows us to change the renderer at run-time

– hides the specific renderer to the rest of the

program

16

Abstract interface

IGraphicsRenderer * pRenderer = new GraphicsRendererD3D();

// ...

// methods of IGraphicsRenderer can be used whatever the

// specific implementation used to create pRenderer

pRenderer->initialize();

pRenderer->setWorld(coordinateSystemMatrix);

pRenderer->renderMesh(playerMesh);

• Abstract interfaces can be very useful in

combination with the factory pattern

17

Abstract interface

GraphicsRendererFactory rendererfactory;

IGraphicsRenderer * pRenderer;

// This creates an OpenGL renderer

pRenderer = rendererfactory.createRenderer("OpenGL");

// This creates a Direct3D renderer

pRenderer = rendererfactory.createRenderer("Direct3D");

• Can an abstract interface provide some partial

implementation?

– acceptable, however the more functions we add, the

less “abstract” the interface becomes

18

Abstract interface

class IGraphicsRenderer { IGraphicsRenderer.h

 public:

 virtual ~IGraphicsRenderer() {};

 virtual void setWorld(const Matrix& m) = 0;

 virtual void renderMesh(const Mesh& m) = 0;

 void renderAllMeshes() {

 // for each mesh call renderMesh

 }

 // ...

};

• Can an abstract interface provide some partial

implementation?

– acceptable, however the more functions we add, the

less “abstract” the interface becomes

– better solution:

19

Abstract interface

Abstract

Interface

Common

Implementation

SubClass1 SubClass2 SubClass3

20

Abstract interface
class IGraphicsRenderer {

 public:

 virtual ~IGraphicsRenderer() {};

 virtual void setWorld(const Matrix& m) = 0;

 virtual void renderMesh(const Mesh& m) = 0;

 virtual void renderAllMeshes() = 0;

};

class CommonGraphicsRenderer : public IGraphicsRenderer {

 public:

 // ...

 void renderAllMeshes() {

 // for each mesh call renderMesh

 }

};

class GraphicsRendererOGL: public CommonGraphicsRenderer

class GraphicsRendererD3D: public CommonGraphicsRenderer

• Abstract interfaces are also used to design

characteristic

– e.g. to add rendering or serialization capabilities

21

Abstract interface

class IDrawable {

 public:

 virtual ~IDrawable() {}

 virtual bool draw() = 0;

};

class ISerializable {

 public:

 virtual ~ISerializable() {};

 virtual void read() = 0;

 virtual bool write() = 0;

};

• Abstract interfaces are also used to design

characteristic

– e.g. to add rendering or serialization capabilities

22

Abstract interface

class Player :

 public IAbstractInterfacePlayer ,

 public IDrawable ,

 public ISerializable {

 public:

 // member functions from IAbstractInterfacePlayer

 // member functions from IDrawable

 // member functions from ISerializable

 // ...

};

• This involves multiple inheritance, but we avoid

most of the potential problems because we

inherit from abstract interfaces

– usually no DoD or ambiguous members

• In order to use the IDrawable or ISerializable

interface on an IAbstractInterfacePlayer object

(or any other parent of Player), we can check if

the object implements the interface

– easier way is to check by type casting

– if ok, use the IDrawable or ISerializable functions

23

Abstract interface

• This can be written in a QueryInterface

function in the Player class

24

Abstract interface

void* Player::QueryInterface (InterfaceID i) {

 if (i == IDRAWABLE) {

 IDrawable* pDraw = static_cast<IDrawable*>(this);

 return (void*)(pDraw);

 }

 if (i == ISERIALIZABLE) {

 ISerializable* pSeri = static_cast<ISerializable*>(this);

 return (void*)(pSeri);

 }

 return NULL;

}

• Using the interfaces

25

Abstract interface

void renderAndSave() {

 for (/* each object (including Players) in the world */) {

 void* pIntR = object.QueryInterface(IDRAWABLE);

 if (pIntR != NULL) {

 IDrawable* pDraw = (IDrawable*) pIntR;

 pDraw->draw();

 }

 void* pIntS = object.QueryInterface(ISERIALIZABLE);

 if (pIntS != NULL) {

 ISerializable* pSeri = (ISerializable*) pIntS;

 pSeri->write();

 }

 }

}

• Every class that inherits from an abstract

interface needs to implement this

QueryInterface() function

• A list of unique identifiers for each interface

is given

– here the identifiers are IDRAWABLE and

ISERIALIZABLE

– use an enumeration type

26

Abstract interface

• Extending the game

– to add data files (levels, characters, items ...)

load them at run-time along with the others (through

a resource manager)

– to partially update code possibly with new data

library architecture (or through library loader)

– to release new functionalities as components,

possibly with new data

plugin (no updated executable)

– to update executable possibly with new data

patch (updated executable)

27

Interfacing

• Releasing new code without updating

executable can be done using dynamic

libraries

– Linking with the code is done at run-time

– We can tell the compiler that a project is building

a library and not an executable file

– We need to decide which functions to export

(abstract interface)

28

Library architecture

• Main file of game engine almost empty

– calls to game loop components

29

Library architecture

main()

GraphicsEngine() PhysicsEngine() AnimationEngine()

...

executable

libraries

• Library compilation is platform-dependent

– dll (dynamic) and lib (static) in Windows

– here we want dynamic library (not append to the

code)

– be aware that linking with libraries

• needs debug dll to debug

• decreases run-time performances

• decreases readability as ‘separated projects’

30

Library architecture

• In Windows, exported functions are declared as
follows (usually abstract interface member
functions)

– use of namespace is strongly recommended

• Implementations of the exported functions as
usual in the body file

• Header files are provided along with the dll

– for the external programs to compile

– if header changes, executable needs a rebuild

31

Library architecture

__declspec(ddlexport) returntype functionName (parameters);

• Using a plugin architecture in combination

with dynamic libraries gives us a way to

extend the application in a convenient

manner

– to avoid rebuild of executable when adding

functionalities

– header file ‘never’ changed as only derived from

a predefined abstract interface

– every plugin has the same exported function(s)

32

Plugin

• The abstract interface contains the functions

that the program uses to manipulate the

plugin

– example: plugin to export Player data

33

Plugin

class IPluginPlayerExport {

 public:

 virtual ~IPluginPlayerExport(){};

 virtual bool export(Player *) = 0;

}

• Initialization and shutdown of plugins are

done in constructor and destructor

• Each plugin can implement the export

function differently

– e.g. same data exported in different formats

• A ‘version’ function can also be useful to

keep track of the plugin version

– as plugin and main program are independent

34

Plugin

• Definition of Player exporter plugins

35

Plugin

class PluginPlayerExportXML : public IPluginPlayerExport {

 public:

 PluginPlayerExportXML (std::string& filename);

 ~PluginPlayerExportXML (){};

 bool export(Player *);

 // ...

}

class PluginPlayerExportDefault : public IPluginPlayerExport {

 public:

 PluginPlayerExportDefault ();

 ~PluginPlayerExportDefault (){};

 bool export(Player *);

 // ...

}

• A game engine often needs more than one

type of plugin

– exporter, importer, viewer, extensions etc.

• Types of plugin are organized through

inheritance

– using an abstract interface containing the

common functions

• such as initialization and shutdown of the plugin, get

name and versioning functions

36

Plugin

• An abstract interface for different types of

plugin

37

Plugin

class IPlugin {

 public:

 virtual ~IPlugin (){};

 virtual const std::string& getPluginName() const = 0;

 virtual const VersionInfo& getVersion() const = 0;

 virtual bool initialize() = 0;

 virtual void shutdown() = 0;

}

• Creation of different interfaces of plugin

– Player exporter plugin

38

Plugin

class IPluginPlayerExporter : public IPlugin {

 public:

 virtual ~IPluginPlayerExporter(){};

 virtual const std::string& getPluginName() const = 0;

 virtual const VersionInfo& getVersion() const = 0;

 virtual bool initialize() = 0;

 virtual void shutdown() = 0;

 virtual bool export(Player *) = 0;

}

• Creation of different interfaces of plugin

– Player importer plugin

39

Plugin

class IPluginPlayerImporter : public IPlugin {

 public:

 virtual ~IPluginPlayerImporter(){};

 virtual const std::string& getPluginName() const = 0;

 virtual const VersionInfo& getVersion() const = 0;

 virtual bool initialize() = 0;

 virtual void shutdown() = 0;

 virtual bool import(Player *) = 0;

}

• Creation of different interfaces of plugin

– Player viewer plugin

40

Plugin

class IPluginPlayerViewer : public IPlugin {

 public:

 virtual ~IPluginPlayerViewer (){};

 virtual const std::string& getPluginName() const = 0;

 virtual const VersionInfo& getVersion() const = 0;

 virtual bool initialize() = 0;

 virtual void shutdown() = 0;

 virtual bool view(Player *) = 0;

}

• Specialization of a plugin interface

– XML Player exporter plugin

41

Plugin

class PluginPlayerExporterXML : public IPluginPlayerExporter {

 public:

 virtual ~PluginPlayerExporterXML(){};

 virtual const std::string& getPluginName() const ;

 virtual const VersionInfo& getVersion() const ;

 virtual bool initialize();

 virtual void shutdown();

 virtual bool export(Player *);

}

• Plugins are loaded at run-time

– they are not part of the ‘main’ code that uses

them

– they are compiled separately and loaded on the

fly

• Plugins are loaded through dynamic libraries

– differ the link with the code inside the library

until run-time

42

Plugin

• Instead of exporting the plugin class itself,

we export a global factory function creating

an instance of the plugin class

– every plugin DLL needs to provide an

implementation of createPlugin

43

Plugin

#define PLUGINEXPORT __declspec(dllexport)

// ...

extern “C” PLUGINEXPORT IPlugin* createPlugin(PluginManager& mgr);

PLUGINEXPORT IPlugin* createPlugin(PluginManager& mgr) {

 return new PluginPlayerExporterXML();

}

• The plugin manager deals with the incoming

plugins at run-time

– by scanning a folder for existing DLLs, detecting

the ones with a plugin interface (createPlugin

function)

– by reading a file (e.g. xml or cfg) specifying

which plugins to load

– by an explicit (GUI) plugin loading procedure

• Uses the LoadLibrary / FreeLibrary /

GetProcAddress API calls from Windows

44

Plugin

• Plugins are loaded by

– returns NULL if load failed, handler to library

otherwise

45

Plugin

#include <windows.h>

// ...

HMODULE handler = LoadLibrary(pluginFileName);

• The exported function is accessible via

– returns NULL if function not found in library

– N.B. we can use the plain name “createPlugin”

because exported as extern “C”

46

Plugin

#define PLUGINIMPORT __declspec(dllimport)

extern “C” PLUGINIMPORT IPlugin* createPlugin(PluginManager& mgr);

typedef IPlugin* (*PCREATEFUNC)(PluginManager&);

PCREATEFUNC pfunc =

(PCREATEFUNC)::GetProcAddress(handler,“createPlugin”);

• As createPlugin cannot have both signature

– PLUGINIMPORT__declspec(dllimport)

• in manager

– PLUGINEXPORT__declspec(dllexport)

• in plugin

• Common definition in manager and selection

at compile time through pre-processor

directives

47

Plugin

48

Plugin

#ifdef PLUGINEXPORT PluginManager.h

 #define PLUGINUSE __declspec(dllexport)

#else

 #define PLUGINUSE __declspec(dllimport)

#endif

extern “C” PLUGINUSE IPlugin* createPlugin(PluginManager& mgr);

#define PLUGINEXPORT 1 PluginPlayerExporterXML.h

#include “PluginManager.h”

extern “C” PLUGINUSE IPlugin* createPlugin(PluginManager& mgr) {

 return new PluginPlayerExporterXML();

}

• The plugin manager finally creates the
plugin by calling the createPlugin function

– as every plugin inherits from IPlugin, the
manager does not know the exact type of
pPlugin

– *this is the reference to the manager (optionally
used in the plugin)

– the manager usually stores the plugin pointers,
handlers and names

49

Plugin

IPlugin* pPlugin = pfunc(*this);

• At shutdown, the manager

– delete the object pPlugin (if owner)

– unload the DLL by calling FreeLibrary(handler)

– removes the plugin from the lists

50

Plugin

• We can load/shutdown different plugins

without having to change any original code

– creation of types of plugin using inheritance

(importers, exporters, viewers etc.)

– use templates to generate interfaces

• The plugin manager gives us direct access

to the loaded plugins

– e.g. setup of different environments with

different loader contexts (set of loaded plugins)

51

Plugin

• Communication with plugins is not always

convenient as we have to pass through the

plugin manager to (un)load them

• Due to dependencies between plugins

– Order in which they are loaded can produce a

crash

– Functionalities can mismatched as plugins are

provided separately

• need to add additional checking for conflicts /

versioning

52

Plugin

• When the main code needs to be released

along with new data, the executable has

itself to be either

– replaced (new complete distribution)

– patched (modification of the exe file)

• very difficult, requires ‘reverse engineering’

• however possible to read exe file as hexadecimal file

and manipulate data from code offset

• but almost impossible to make modifications of code

sequence

53

Patch

• Games usually contain

– One ‘small’ main exe file with

• splash screen

• few options saved on HD (configuration files)

• versioning updater and/or plugin manager

– Several dynamic libraries for internal and

external game-related components etc.

– Directories with resources

• Update and extension with either DLL

update, plugin manager and/or patcher

54

Interfacing

End of lecture #9

Next lecture

Resource and object sharing

